
Week 14 - Friday

 What did we talk about last time?
 Review up to Exam 2
 Pointers
 Dynamic memory allocation
 Structs
 Unions
 Enums
 Time

 Final exam:
 Thursday, May 1, 2025
 8:00 to 10:00 a.m.
 50% longer than previous exams, but you'll have 100% more time

 There will be multiple choice, short answer, and programming
questions

 Write a function that finds the median of an array
 You'll have to sort it

 Write a function that, given a string, creates a dynamically allocated
chunk of memory containing the string reversed

 Write a function that will delete an element from the singly linked list
struct given in earlier slides

 Write a program that counts the total number of characters in all the
arguments passed in through the command line
 Ignore argv[0]

 Write a program to "encrypt" a file by writing a new file with exactly the
same contents, except that each byte in the file is inverted
 Old byte: x
 New byte: 255 - x

 Think of a file as a stream of bytes
 It is possible to read from the stream
 It is possible to write to the stream
 It is even possible to do both
 Central to the idea of a stream is also a file stream pointer,

which keeps track of where in the stream you are
 We have been redirecting stdin from and stdout to files,

but we can access them directly as well

 To open a file, call the fopen() function
 It returns a pointer to a FILE object
 Its first argument is the path to the file as a null-terminated

string
 Its second argument is another string that says how it is being

opened (for reading, writing, etc.)

FILE* file = fopen("data.txt", "r");

 The following are legal arguments for the second string

Argument Meaning

"r" Open for reading. The file must exist.

"w" Open for writing. If the file exists, all its contents will be erased.

"a" Open for appending. Write all data to the end of the file, preserving anything that is
already there.

"r+" Open a file for reading and writing, but it must exist.

"w+" Open a file for reading and writing, but if it exists, its contents will be erased.

"a+" Open a file for reading and writing, but all writing is done to the end of the file.

 Once you've got a file open, write to it using fprintf() the
same way you write to the screen with printf()

 The first argument is the file pointer
 The second is the format string
 The third and subsequent arguments are the values

FILE* file = fopen("output.dat", "w");
fprintf(file, "Yo! I got %d on it!\n", 5);

 Once you've got a file open, write to it using fscanf() the
same way you write to the screen with scanf()

 The first argument is the file pointer
 The second is the format string
 The third and subsequent arguments are pointers to the

values you want to read into

FILE* file = fopen("input.dat", "r");
int value = 0;
fscanf(file, "%d", &value);

 When you're doing using a file, close the file pointer using the fclose()
function

 Files will automatically be closed when your program ends
 It's a good idea to close them as soon as you don't need them anymore
 It takes up system resources
 You can only have a limited number of files open at once

FILE* file = fopen("input.dat", "r");
int value = 0;
fscanf(file, "%d", &value);
fclose(file);

 If you need to do character by character output, you can use
fputc()

 The first argument is the file pointer
 The second is the character to output
 putc() is an equivalent function

FILE* file = fopen("output.dat", "w");
for(int i = 0; i < 100; i++)

fputc(file, '$');

 If you need to do character by character input, you can use fgetc()
 The argument is the file pointer
 It returns the character value or EOF if there's nothing left in the file
 getc() is an equivalent function

FILE* file = fopen("input.dat", "r");
int count = 0;

while(fgetc(file) != EOF)
count++;

printf("There are %d characters in the file\n", count);

 C programs that run on the command line have the following
file pointers open by default
 stdin
 stdout
 stderr

 You can use them where you would use other file pointers

 Technically, all files are binary files
 They all carry data stored in binary

 But some of those binary files are called text files because
they are filled with human readable text

 When most people talk about binary files, they mean files
with data that is only computer readable

 Wouldn't it be easier to use all
human readable files?

 Binary files can be more efficient
 In binary, all int values are the same

size, usually 4 bytes
 You can also load a chunk of

memory (like a WAV header) into
memory with one function call

Integer
Bytes in text
representation

0 1

92 2

789 3

4551 4

10890999 8

204471262 9

-2000000000 11

 To specify that a file should be opened in binary mode,
append a b to the mode string

 On some systems, the b has no effect
 On others, it changes how some characters are interpreted

FILE* file = fopen("output.dat", "wb");

FILE* file = fopen("input.dat", "rb");

 The fread() function allows you to read binary data from a file and
drop it directly into memory

 It takes
 A pointer to the memory you want to fill
 The size of each element
 The number of elements
 The file pointer

double data[100];
FILE* file = fopen("input.dat", "rb");
fread(data, sizeof(double), 100, file);
fclose(file);

 The fwrite() function allows for binary writing
 It can drop an arbitrarily large chunk of data into memory at once
 It takes
 A pointer to the memory you want to write
 The size of each element
 The number of elements
 The file pointer

short values[50];
FILE* file = NULL;
//fill values with data
file = fopen("output.dat", "wb");
fwrite(values, sizeof(short), 50, file);
fclose(file);

 The fseek() function takes
 The file pointer
 The offset to move the stream pointer (positive or negative)
 The location the offset is relative to

 Legal locations are
 SEEK_SET From the beginning of the file
 SEEK_CUR From the current location
 SEEK_END From the end of the file (not always supported)

FILE* file = fopen("input.dat", "rb");
int offset;
fread(&offset,sizeof(int),1,file); //get offset
fseek(file, offset, SEEK_SET);

 Virtually all file systems have each partition laid out something
like this

 The boot block is the first block and has information needed to
boot the OS

 The superblock has information about the size of the i-node table
and logical blocks

 The i-node table has entries for every file in the system
 Data blocks are the actual data in the files and take up almost all

the space

Boot block Superblock i-node Table Data blocks

 Every file has an i-node in the i-node table
 Each i-node has information about the file

like type (directory or not), owner, group,
permissions, and size

 More importantly, each i-node has pointers
to the data blocks of the file on disk

 In ext2, i-nodes have 15 pointers
 The first 12 point to blocks of data
 The next points to a block of pointers to blocks

of data
 The next points to a block of pointers to

pointers to blocks of data
 The last points to a block of pointers to pointers

to pointers to blocks of data

 Not every layer is always used
 Sometimes user errors are referred to as Layer 8 problems

Layer Name Mnemonic Activity Example

7 Application Away User-level data HTTP

6 Presentation Pretzels Data appearance, some encryption TLS

5 Session Salty Sessions, sequencing, recovery IPC and part of TCP

4 Transport Throw Flow control, end-to-end error detection TCP

3 Network Not Routing, blocking into packets IP

2 Data Link Dare
Data delivery, packets into frames, transmission
error recovery

Ethernet

1 Physical Programmers Physical communication, bit transmission Electrons in copper

 The goal of the OSI model is to make lower layers transparent to upper ones

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

MAC IP UDP Payload

IP UDP Payload

UDP Payload

Payload

Payload

Payload

 The OSI model is sort of a sham
 It was invented after the Internet was already in use
 You don't need all layers
 Some people think this categorization is not useful

 Most network communication uses TCP/IP
 We can view TCP/IP as five layers:

Layer Action Responsibilities Protocols

Application Prepare messages User interaction HTTP, FTP, etc.

Transport Convert messages to segments Sequencing, reliability, error correction TCP or UDP

Internet Convert segments to packets Flow control, routing IP

Link Convert packets to frames
Point-to-point communication between
devices on the same network

Ethernet, Wi-Fi

Physical Transmit frames as bits Data communication

 A TCP/IP connection between two hosts (computers) is
defined by four things
 Source IP
 Source port
 Destination IP
 Destination port

 One machine can be connected to many other machines, but
the port numbers keep it straight

 Sockets are the most basic way to send data
over a network in C

 A socket is one end of a two-way
communication link between two programs
 Just like you can plug a phone into a socket in your

wall (if you are living in 1980)
 Both programs have to have a socket
 And those sockets have to be connected to each

other
 Sockets can be used to communicate within a

computer, but we'll focus on Internet sockets

 If you want to create a socket, you can call the socket() function
 The function takes a communication domain
 Will always be AF_INET for IPv4 Internet communication

 It takes a type
 SOCK_STREAM usually means TCP
 SOCK_DGRAM usually means UDP

 It takes a protocol
 Which will always be 0 for us

 It returns a file descriptor (an int)

int sockFD = -1;
sockFD = socket(AF_INET, SOCK_STREAM, 0);

 Using sockets is usually associated with a client-server model
 A server is a process that sits around waiting for a connection
 When it gets one, it can do sends and receives

 A client is a process that connects to a waiting server
 Then it can do sends and receives

 Clients and servers are processes, not computers
 You can have many client and server processes on a single machine

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

read()

write()

close()

Repeat until done

Server Client

 Once you've created your socket, set up your port and address, and
called connect(), you can send data
 Assuming there were no errors
 Sending is very similar to writing to a file

 The write() function takes
 The socket file descriptor
 A pointer to the data you want to send
 The number of bytes you want to send
 Just like writing to a file

 It returns the number of bytes sent

char* message = "Flip mode is the squad!";
write(socketFD, message, strlen(message)+1);

 Or, once you're connected, you can also receive data
 Receiving is very similar to reading from a file

 The read() function takes
 The socket file descriptor
 A pointer to the data you want to receive
 The size of your buffer
 Just like reading from a file

 It returns the number of bytes received, or 0 if the connection is
closed, or -1 if there was an error

char message[100];
read(socketFD, message, 100);

 Sending and receiving are the same on servers, but setting up
the socket is more complex

 Steps:
1. Create a socket in the same way as a client
2. Bind the socket to a port
3. Set up the socket to listen for incoming connections
4. Accept a connection

 C can have pointers to functions
 You can call a function if you have a pointer to it
 You can store these function pointers in arrays and structs
 They can be passed as parameters and returned as values
 Java doesn't have function pointers
 Instead, you pass around objects that have methods you want
 C# has delegates, which are similar to function pointers

 The syntax is a bit ugly
 Pretend like it's a prototype for a function
 Except take the name, put a * in front, and surround that with parentheses

#include <math.h>
#include <stdio.h>

int main()
{

double (*root) (double); //pointer named root
root = &sqrt; //note there are no parentheses
printf("Root 3 is %lf", root(3));
printf("Root 3 is %lf", (*root)(3)); //also legal

return 0;
}

 C++ is based on C and easier to use
 You can declare variables anywhere
▪ Not the case in the C89 standard (where all variables had to be declared right

after a block starts), but our gcc is following the C99 standard

 It has function overloading
 Most people think the I/O is cleaner

 The big addition is OOP through classes
 It's an approximate superset of C that includes most C

structures

 It's not too different from C
 We need different headers for C++ I/O

#include <iostream>

using namespace std;

int main()
{

cout << "Hello, world!" << endl;
return 0;

}

 Output uses the cout object (of type ostream)
 Instead of using formatting strings, cout uses the idea of a

stream, where objects are placed into the stream separated by the
extraction operator <<

 The endl object adds a newline to the stream
 Of course, "\n" works too

int x = 50;

cout << "There are " << x << " ways to leave your lover."
<< endl;

 Input uses the cin object (of type istream)
 cin also uses the idea of a stream, where items are read from

the stream and separated by the insertion operator >>
 It reads items using whitespace as the separator, just like
scanf()

int x = 0;
int y = 0;
int z = 0;
cout << "Enter the x, y, and z values: ";
cin >> x >> y >> z;

 Like Java, C++ has a class for holding strings, which makes life
much easier
 It's called string (with a lower case 's')

 You must include <string> to use it
 Unlike String in Java, string is mutable
 You can use array-style indexing to get and set individual characters

string a = "Can I kick it?";
string b = "Yes, you can!";
string c = a + " " + b;
c[0] = 'D';
c[1] = 'i';
c[2] = 'd';
cout << c << end; // Prints Did I kick it? Yes, you can!

 Java uses packages to keep different classes with the same name straight
 C++ uses namespaces
 The standard library includes I/O (<iostream>), the string class

(<string>), STL containers (<vector>, <list>, <deque>, and
others)

 If you use these in your program, put the following after your includes

 The alternative is to specify the namespace by putting the it followed by
two colons before the class name

using namespace std;

std::string name = "Ghostface Killah";

 Regular C++ functions are very similar to functions in C
 A big difference is that prototypes are no longer optional if

you want to call the function before it's defined
 Unlike C, function overloading allowed:
int max(int a, int b)
{

return a > b ? a : b;
}

int max(int a, int b, int c)
{

return max(a, max(b, c));
}

 In C, all functions are pass by value
 If you want to change an argument, you have to pass a pointer to the value

 In C++, you can specify that a parameter is pass by reference
 Changes to it are seen on the outside
 You do this by putting an ampersand (&) before the variable name in the header

void swap(int &a, int &b)
{

int temp = a;
a = b;
b = temp;

}

 C++ also allows you to specify default values for function parameters
 If you call a function and leave off those parameters, the default values will be

used
 Default parameters are only allowed for the rightmost grouping of parameters

void build(int width = 2, int height = 4)
{

cout << "We built this house with " << width <<
" by " << height << "s.";

}

build(); //We built this house with 2 by 4s.
build(3); //We built this house with 3 by 4s.
build(6, 8); //We built this house with 6 by 8s.

 When you want to dynamically allocate memory in C++, you
use new (instead of malloc())
 No cast needed
 It "feels" a lot like Java

int* value = new int(); // Make an int
int* array = new int[100]; // Array of ints
Wombat* wombat = new Wombat(); // Make a Wombat
// Makes 100 Wombats with the default constructor
Wombat* zoo = new Wombat[100];

 When you want to free dynamically allocated memory in C++,
use delete (instead of free())
 If an array was allocated, you have to use delete[]

int* value = new int(); // Make just one int
delete value;

Wombat* wombat = new Wombat();
delete wombat;

Wombat* zoo = new Wombat[100];
delete[] zoo; // Array delete needed

 C++ has several classically important elements of OOP:
 Encapsulation
 Dynamic dispatch
 Polymorphism
 Inheritance
 Self-reference

 In C++, you can overload operators, meaning that you can
define what + means when used with classes you design

 Thus, the following could be legal:

Hippopotamus hippo;
Sandwich club;
Vampire dracula = club + hippo;

 Allow classes and functions to be written with a generic type
or value parameter, then instantiated later

 Each necessary instantiation is generated at compile time
 Appears to function like generics in Java, but works very

differently under the covers
 Most of the time you will use templates, not create them

 There is no next time!

 Final exam:
 Thursday, May 1, 2025
 8:00 to 10:00 a.m.
 50% longer than previous exams, but you'll have 100% more time

 There will be multiple choice, short answer, and programming
questions

 Finish Project 6
 Due tonight by midnight!

 Final exam:
 Thursday, May 1, 2025
 8:00 to 10:00 a.m.

	COMP 2400
	Last time
	Questions?
	Project 6
	Review
	Final exam
	Practice
	File I/O
	Files
	fopen()
	fopen() arguments
	fprintf()
	fscanf()
	Closing files
	fputc() and putc()
	fgetc() and getc()
	Standard streams
	What is a binary file?
	Why use binary files?
	Changes to fopen()
	fread()
	fwrite()
	fseek()
	Partition layout
	i-nodes
	Networking
	Layers
	Transparency
	TCP/IP
	TCP/IP
	Sockets
	Sockets
	socket()
	Clients vs. servers
	Slide Number 35
	Sending
	Receiving
	Servers
	Function pointers
	Declaring a function pointer
	C++
	Overview
	Hello, World in C++
	Output in C++
	Input in C++
	The string class
	The std namespace
	Functions in C++
	Pass by reference
	Default parameter values
	The new keyword
	The delete keyword
	Object Oriented Programming
	Overloading operators
	Templates
	Upcoming
	Next time…
	Final exam
	Reminders

